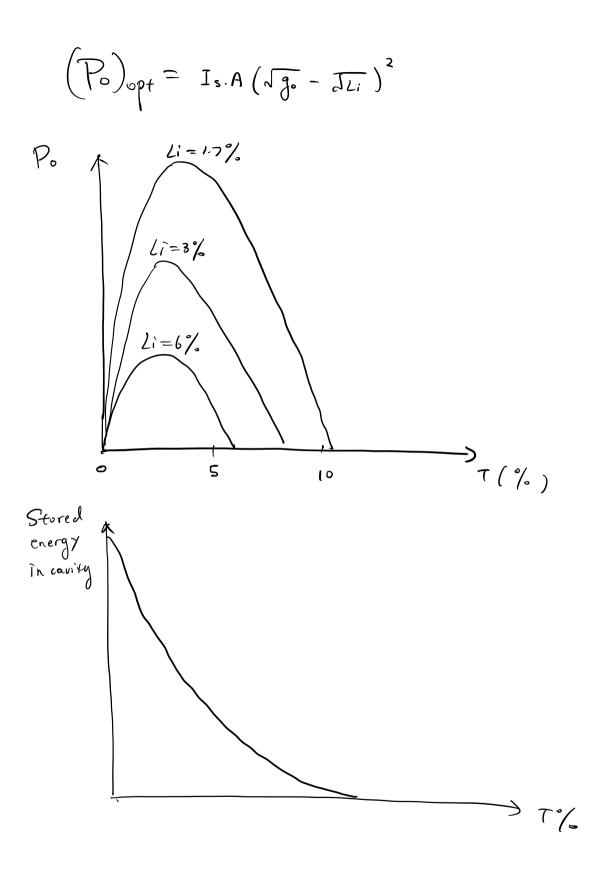


threshold condition. gain = loss.
threshold gain:
$$\gamma_t(\omega) = 2 - \frac{1}{L} \ln r_1 r_2$$
.

Po
Po
Po
Po
Po
Po
Po
Ts A T
$$\left(\frac{g_{0}}{L} - 1\right)$$

Cut put pover:
Po
Ts A T $\left(\frac{g_{0}}{L} - 1\right)$
Saturation intensity
Let $L = Li + T = pirror transmission
Lresidual loss
Po
To Ts A T $\left(\frac{g_{0}}{Li + T} - 1\right)$
Po
Po
To Ts A T $\left(\frac{g_{0}}{Li + T} - 1\right)$
Po
Po
To Ts A T $\left(\frac{g_{0}}{Li + T} - 1\right)$
Po
Po
To To T Topt = -Li + $\sqrt{g_{0}Li}$$



2. Muti-mode lasing (
$$p_{252}$$
 Tariv)
1) Homogeneous broadened gain medium.
gain/loss
(eingle-mode lasing)
(eingle-mode lasing)
(eingle-mode lasing)
Further increasing pumping
Further increasing pumping
At or beyound threshold.
 $N_2 - N_1 = N_t$
Below threshold.
 $N_2 - N_1 = \frac{R}{W_1 + w_{21}}$ pumping role.
 $N_1 - N_2 = \frac{C}{2nL}$ (FSR.)

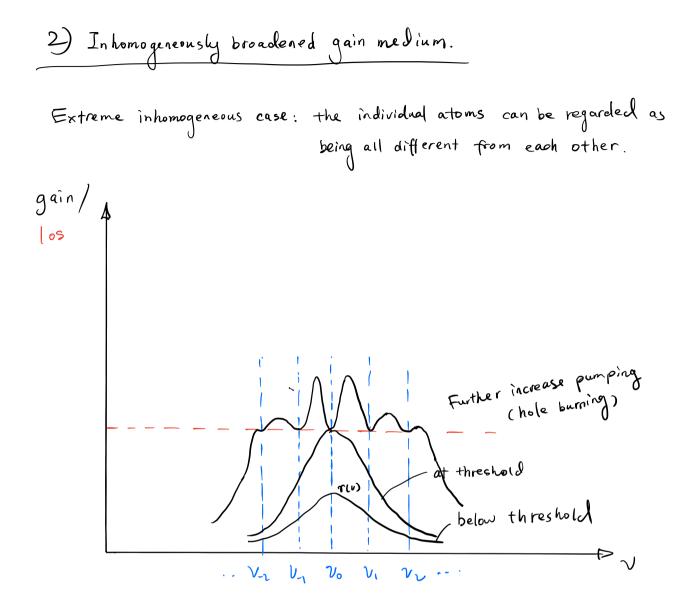
Comments:

For homogeneously brondened gain medium.

① Below threshold, population inversion $N_{2} - N_{1}$ is proportional to pumping rate. gain $\Upsilon(\nu) = (N_{2} - N_{1}) \frac{c^{2}}{8\pi n^{2} \nu^{2} t_{spin}} g(\nu)$

(2) As pumping rate is increased,
$$N_2 - N_1$$
 is increased,
When $\mathcal{T}(v_0) = \mathcal{T}_t = \partial - \frac{1}{f} \ln r_1 r_2$, lasing occurs.

⁽³⁾ Further increasing the pumping will NOT cause
$$T(v)$$
 to increase
(yain saturation, or gain clemping). It will only lead to
An increase of output intensity. i.e.
$$P_e = P_s \left(\frac{R}{R_t} - 1\right) \quad (|ast | ecture)$$



Comments:

- Below threshold, behavior is same as homogenously broadened case.
- (2) At threshold, the gain at Vo is clamped at the threshold rulue.

- 3 Due to inhomogeous broadening, atoms do not communicate with each other". There's no reason why gain at other frequencies should not increase with further pumping.
- (Farther pumping will lead to oscillation at additional longitudinal modes.

Phase of each lasing mode is radom !!

For inhomogenouls by broadened laser, oscillation
can occur at different longitudinal modes.
$$V_q - V_{q-1} = FSR = \frac{c}{2nl}$$

 $\Rightarrow \omega_q - \omega_{q-1} = 2\pi (v_q - v_{q-1}) = \frac{\pi c}{nl} = \Omega$

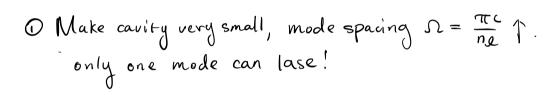
So the total output
$$E = field$$
. is
 $E(t) = \sum_{m} C_{m} e^{i [(w_{ot} m n)t + \phi_{m}]} \prod_{m} phase of the m+n mode}$.

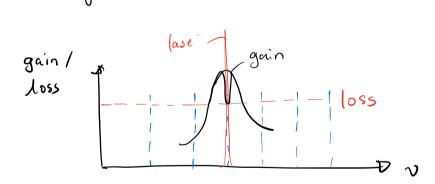
Note: If
$$\phi_m$$
 is fixed, $E(t)$ is periodic in time, period = $\frac{\Omega \pi}{\Omega} = \frac{2L}{c}$
 $E(t+\tau) = \sum_{m} c_m \exp\left\{i\left(\omega_0 + m\Omega\right)\left(t + \frac{2\pi}{\Omega}\right) + \phi_m\right\}$
 $= \sum_{m} c_m \exp\left[i\left(\omega_0 + m\Omega\right)t + \phi_m\right] \exp\left[2\pi\left(\frac{\omega_0}{\Omega} + m\right)\right]$
 $= E_t \cdot \exp\left(\frac{i2\pi\omega_0}{\Omega}\right)$

But, in normal cases, \$m is random !

Mode intereference

Ways to get coherent output:

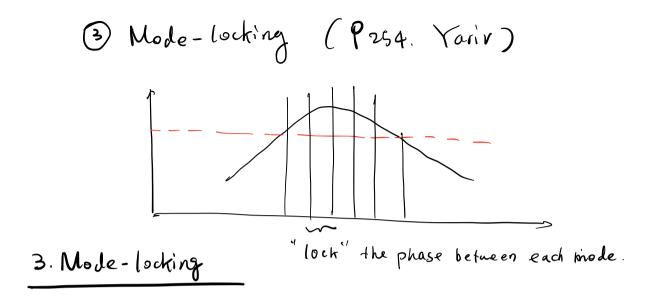




2 Make the reflector narrow band! gain/ 1055

(0

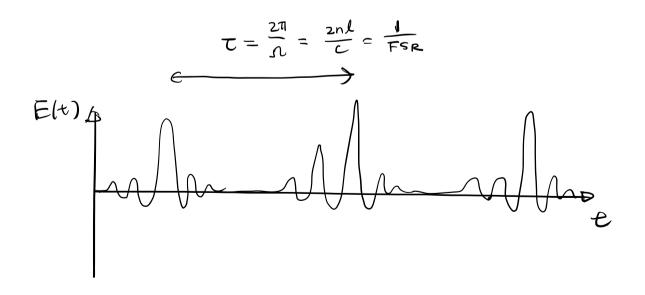
Ð

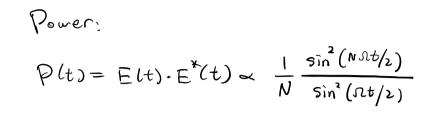


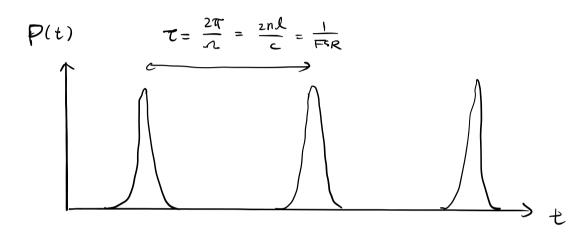
Assuming
$$\oint m = 0$$
, $C_m = \frac{1}{\sqrt{N}}$, Eq. \odot can be written as:

$$E(t) = \frac{1}{\sqrt{N}} \sum_{m=1}^{N} e^{i(w_0 + m\Omega)t}$$

$$= \frac{1}{\sqrt{N}} e^{i[w_0 + (N+1)\Omega/2]t} \frac{\sin(N\Omega t/2)}{\sin(\Omega t/2)}$$





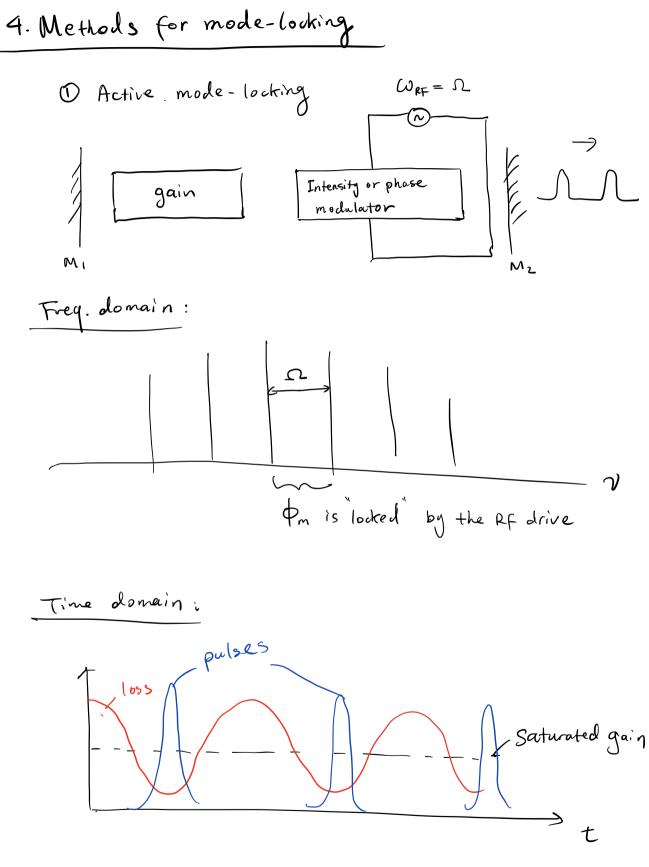


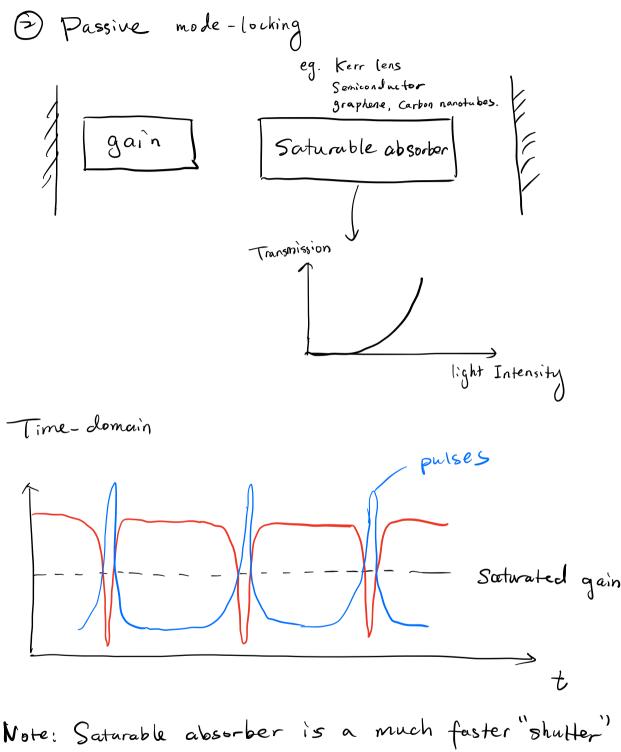
Comments

- If phase ϕ_m are locked The power is emitted in the form of a train of pulses, with a period of $T = \frac{2n\lambda}{C}$ (the round trip transit time)
 - The peak power of the pulse (P(SZ). S=0.1.2...) is equal to N times the average power. where N is the number of modes looked together.

(*) Pulse width (FWHM of
$$P(st)$$
) is $T_0 = \frac{T}{N}$.
 $N = \frac{SWS}{2}$ mode spacing.

$$S_{0} \quad t_{0} = \frac{T}{N} = \frac{2nL}{c} = \frac{2\pi}{\omega} = \frac{1}{\omega}$$





compared to external RF modulation. It allows for the generation of shorter pulses.