Lecture 13. Interaction of radiation and atomic systems.

Learning objectives 1. Atomic transitions 2. Complex refractive index of atomic systems 3. Homogeneous and inhomogeneous broadening

How to model this system? \overrightarrow{nV} induced dipole moment \overrightarrow{nV} $\chi(w) = \chi'(w) - i\chi'(w)$ polarisation p = NaE $= Go\chi E$

Comments:

- ① X(W) should be derived by time-dependent pertubation theory in QM, but can be approximated by classical harmonic oscillator model.
- 2 In this case, the 2-level transitions are regarded as "dipoles". They are known as "Rabi oscillators".

equation of motion: $m \frac{d^2 x}{dt^2} + mr \frac{d x}{dt} + mw_0^2 x = -e E$

Where χ is the position of electron relative to the atom. m is the electron mass, $W_0 = \frac{E_2 - E_1}{\hbar}$ is oscillation freq. of e^- . χ is damping coefficient.

Let
$$E = E_0 e^{i\omega t}$$
.
 $\chi = \frac{-eE_0}{m(w_0^2 - \omega^2 + i\gamma w)} e^{\chi} p(i\omega t)$

induced dipole moment:

$$P = -e \chi = \frac{e^2}{m(\omega_o^2 - \omega_{\pm}^2)} E_o exp(int) = aE$$

If there are Natoms per unit volume:

$$\widetilde{h}^{2} = 1 + \widetilde{\chi}^{2} = 1 + \frac{Na}{\epsilon_{0}} = 1 + \frac{Ne^{2}}{m\epsilon_{0}(\omega_{0}^{2} - \omega_{1}^{2})}$$

where $\chi = \chi - i \chi'' = \frac{Ne^2}{m t_0 (w_0^2 - w^2 + i \pi w)}$

ahen
$$\chi_{\alpha}$$
, $n = 1 + \frac{1}{2}\chi = 1 + \frac{Ne^2}{2M\epsilon_b (\omega_b^2 - \omega^2 + irw)}$

When waw.

$$\begin{aligned} \hat{\partial} &= \frac{e^2}{2\omega_0 m (\omega_0 - \omega + i \dot{r}/2)} \\ \hat{n}^2 &= 1 + \chi = 1 + \frac{Ne^2}{2\omega_0 m \mathcal{E}_0 (\omega_0 - \omega + i \dot{r}/2)} \\ \chi &= \chi' - i \chi = \frac{Ne^2}{2\omega_0 m \mathcal{E}_0 (\omega_0 - \omega + i \dot{r}/2)} \end{aligned}$$

$$\tilde{h} = 1 + \frac{1}{2}\chi = 1 + \frac{Ne^2}{4\omega_0 m \epsilon_0 (\omega_0 - \omega + i)/2} \quad (\chi cc) \quad ()$$

Comments:

real atoms :

where r is the linewidth of the transition, f2, is the oscillator strength.

$$f_{21} = \frac{2m\omega_0}{\hbar} |\langle u_1 | x | u_1 \rangle|^2 = \frac{2m\omega_0}{\hbar} \iiint u_1^* x u_1 \, dx \, dy \, dz,$$

where u_2 , u_1 are wavefunctions of eigenstates. $\sum_{m=2}^{\infty} fm_1 = 1$

Complex refractive index:

$$\tilde{n} = n - i K = 1 + \frac{Ne^2(\omega_o^2 - \omega^2)}{2m to [(\omega_o^2 - \omega^2)^2 + \gamma^2 \omega^2]} - i \frac{Ne^2 \sigma \omega}{2m to [(\omega_o^2 - \omega^2)^2 + \gamma^2 \omega^2]}$$

$$k' = \hat{n} \frac{\omega}{c} = \frac{2\pi}{\lambda} n' = \frac{2\pi}{\lambda} (n-i\kappa)$$

Electric field inside the medium.

$$E = A exp[i(\omega t - k'z)] = A exp[i(\omega t - \frac{2\pi}{\lambda}(n-i\kappa))]$$
$$= A exp[i(\omega t - \frac{2\pi}{\lambda}nz)] exp(-\frac{2\pi}{\lambda}\kappaz)$$
$$decay.$$

Intensity: $I(z) = I(0) exp(-\partial z)$ $I = E^{*}E$

So attenuention coefficient:
$$Q = \frac{4\pi}{\lambda} \cdot K$$

example: $k = 0.000t$, at $\lambda = 500$ nm, $Q = 25$ cm⁻¹

$$\begin{split}
\hat{N} &= n - i k = 1 + \frac{N e^2 (w_0 - \omega)}{4m w_0 \varepsilon_0 [(w_0 - \omega)^2 + (\frac{r}{2})^2]} - i \frac{N e^2 (r/2)}{4m \omega_0 \varepsilon_0 [(w_0 - \omega)^2 + (\frac{r}{2})^2]} \\
\chi &= \chi - i \chi'' = \frac{N e^2 (\omega_0 - \omega)}{2m \omega_0 \varepsilon_0 [(w_0 - \omega)^2 + (\frac{r}{2})^2]} - i \frac{N e^2 (\frac{r}{2})}{2m w_0 \varepsilon_0 [(w_0 - \omega)^2 + (\frac{r}{2})^2]}
\end{split}$$

$$\chi' = \frac{Ne^{2} (\nu_{0} - \nu)}{4\pi m W_{0} \epsilon_{0} [(\nu_{0} - \nu)^{2} + (\frac{\Delta \nu}{2})^{2}]}$$

$$\chi'' = \frac{Ne^{2} (\frac{\Delta \nu}{2})}{4\pi m W_{0} \epsilon_{0} [(\nu_{0} - \nu)^{2} + (\frac{\Delta \nu}{2})^{2}]}$$

$$(\mathcal{M}_{p})$$

Comments

- O Absorption spectrum is the same as the spontaneous eniosion spectrum.
- This means that absorption (radiation is not strictly monochromatic ! The absorption / spon. emission spectrum is broadened around wo

Define
$$g(v) = \frac{1}{2\pi} \frac{\partial/2\pi}{(v-v_0)^2 + (v/4\pi)^2}$$
 as the lineshape function,
and $\int_{-\infty}^{\infty} g(v) dv = 1$. $g(v) dv$: probability of spon emission

from level 2 to 1 mill result in a photon whose frequency is between v and Vtdv.

$$g(v) = \frac{\Delta V}{2\pi \left[\left(v - v_0 \right)^2 + \left(\frac{\Delta V}{2} \right)^2 \right]} \qquad \delta V = \frac{1}{2\pi} = \frac{1}{2\pi \tau} \left(FWHM \right)$$

where c is the lifetime of the emitting state.

So
$$\Delta T = \frac{1}{2\pi} (\tau_u^{-1} + \tau_1^{-1} + \tau_{co}^{-1})$$

Lupper Llower Collision.

Three possible reasons:

: O Spontaneous lifetime of the excited state © Collision of an atom embedded in a crystal with phonon.

3 Collisions beween atoms.

(2) For homogeneous brodening, each atom has a same Vo

Comments:

O Spectrum of spontaneous emission reflects the spread in each individul transition frequencies, not the broadening due to the finite lifetime of the excited states. Two possible reasons:

١

() Impurities or random strain in the host crystal.

(2) For gaseon atom (or molecule), transition freq. vis doppler Shifted. $\int moving velocity$. $v = v_0 + \frac{v_x}{c} v_0$ $\int transition freq of a stationary atom$